Optimal estimates for short horizon travel time prediction in urban areas
نویسندگان
چکیده
Increasing popularity of mobile route planning applications based on GPS technology provides opportunities for collecting traffic data in urban environments. One of the main challenges for travel time estimation and prediction in such a setting is how to aggregate data from vehicles that have followed different routes, and predict travel time for other routes of interest. One approach is to predict travel times for route segments, and sum those estimates to obtain a prediction for the whole route. We study how to obtain optimal predictions in this scenario. It appears that the optimal estimate, minimizing the expected mean absolute error, is a combination of the mean and the median travel times on each segment, where the combination function depends on the number of segments in the route of interest. We present a methodology for obtaining such predictions, and demonstrate its effectiveness with a case study using travel time data from a district of St. Petersburg collected over one year. The proposed methodology can be applied for real-time prediction of expected travel times in an urban road network.
منابع مشابه
A neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country
Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...
متن کاملOptimal Allocation of Electric Vehicles' Parking Lots in Distribution System Considering Urban Traffic
Abstract: Parking lots for electric vehicles (EVs) can make good utilization of the EVschr('39') battery capacity due to the large number of EVs. However, the location and size of parking lots will affect the distribution network condition. In this paper, a mixed-integer linear programming (MILP) model is proposed for locating and determining the optimal capacity of EVschr('39') parking lots co...
متن کاملImproved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملComputationally Efficient Long Horizon Model Predictive Direct Current Control of DFIG Wind Turbines
Model predictive control (MPC) based methods are gaining more and more attention in power converters and electrical drives. Nevertheless, high computational burden of MPC is an obstacle for its application, especially when the prediction horizon increases extends. At the same time, increasing the prediction horizon leads to a superior response. In this paper, a long horizon MPC is proposed to c...
متن کاملA Novel Method for Travel System Patterns
Due to population growth in urban areas, especially in the capital cities in developing countries, the use of private vehicles are increasing, leading to many problems such as congestion, pollution, noise, long travel time, high travel cost and more side effects. In such circumstances government policy would encourage people to use public transportation. In the meantime, employing the Intellige...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Intell. Data Anal.
دوره 20 شماره
صفحات -
تاریخ انتشار 2016